保健物理, 10, 211~214 (1975)

ノート

Ge(Li) 半導体検出器の測定効率

本郷昭三*1,野田 豊*1,横田繁明*2

(1975年8月18日受理)

Efficiency of Ge(Li) Detector

Syozo HONGO,*1 Yutaka NODA,*1 Shigeaki YOKOTA*2

I 序

優れたγ線エネルギー分解能をもつ Ge(Li) 半導体検 出器は,化学処理を必要とせず,多核種を分離定量で き、安全管理等保健物理的な面から、あるいは一般研究 においても、利用性は大きい。上記の長所を生かして、 種々の核種を含む、種々の形状の試料が半導体検出器を 用いて定量され、種々の条件下で測定効率を求めておく ことが必要となっている。測定効率を実験的に求める場 合,あらかじめ,その値が推定できれば,測定条件(γ 線エネルギーや検出器と試料の相対位置等)を必要最小 限にすることによって、多くの手数を減ずることができ る。また、効率が求められていない条件下で定量する必 要が生じた場合、すなわち緊急時や相対的な値が主たる 問題の場合、測定効率を推定することによって、オーダ をつかむことが可能となる。筆者らは28.3ccの同軸型 Ge(Li) 半導体検出器 (Fig. 1) の全エネルギーピーク効 率を,市販の標準線源*3を用いて実験的に求めた。これ らの結果から、効率較正の行われていない条件に対する 全エネルギーピーク効率の推定や、他の検出器に対する 全エネルギーピーク効率(以下効率と記す)の推定に資 すべく検討を行った。

II 測定および結果

1. 検出器-線源の相対位置に対する効率の変化

⁵⁴Mn (γ : 835.3 keV) を用いて,検出器-線源の相対位 置に対する効率を調べた。その結果を**Fig. 2** に示す。 同図で X 軸は検出器中心軸から,Y 軸は検出器キャッ プから,線源までの距離を表わし,Z 軸は中 心 軸上 5 cm のところを 1.0 とした相対効率を表わしている。各 測定点の相対効率の値に、検出器の実行中心からの距離 の 2 乗 ($R^2 = \{(X + \Delta X)^2 + Y^2\}$)*4 を乗ずるとほぼ一定 値となり,**Fig. 2** の薄墨の部分においては、すべての 値は平均値に対して ±4% 以内にある。同様に ¹³⁷Cs (γ : 661.6 keV) および ⁶⁰Co (γ : 1,332 keV) についても実 験を実施したが、測定値に R^2 を乗ずると、それぞれの 値は平均値の ±3% および ±4% 以内となった。

しかし ²⁴¹Am (γ : 59.5 keV) の場合には, 21 点の測 定に対して平均値の ±4% に入る点は全体の 1/3 以下 で, 平値均に対して最大の誤差は 25% にも達し,前述 の比較的高いエネルギーの γ 線に対する効率変化とはか なり異なっている。特に顕著な差は,中心軸上から離れ た点 (*X*=3, 4, 5) にみられる (**Fig. 3** 参照)。この主た る原因は γ 線のエネルギーが低いため,線源から放出さ

- *1 放射線医学総合研究所;千葉市穴川 4-9-1 (〒280) National Institute of Radiological Sciences; 9-1, Anagawa 4-chome, Chiba-shi, Chiba-ken.
- *2 東海大学医学部; 神奈川県伊勢原市望星台(〒259-11) Tokai University School of Medicin, Boseidai, Isehara-shi, Kanagawa-ken.
- *3 The Radio Chemical Center 製, 各々の線源の精度 2% 以内。
- ** 後述(2)式参照,本検出器の場合, 4X=2 cm となり, R はほぼ検出器中心からの距離とみなすことができた。

Fig. 1 Schematic diagram of the 28 cc Ge(Li) detector.

unit : mm.

Fig. 2 Relative full energy peak efficiency of the 28 cc Ge(Li) detector for Mn-54 (835.3 keV) gamma-ray.

X-axis : radial distance from source to the detector axis, Y-axis : vertical distance from source to the detector end cap.

Fig. 3 Relative full energy peak efficiency of the 28 cc Ge(Li) detector for Am-241 (59.5 keV) gamma-ray.

れた γ線が検出器の有効部分に達する間に比較的大きい 吸収(キャップ部アルミ等)が起り,その割合が線源の 位置によって異なることと,実行中心が比較的高いエネ ルギーをもつ γ線の場合と異なることによるものと考え られる。

Fig. 4 Absolute full energy peak efficiency of the 28 cc Ge(Li) detector.

Parameter : distance from source to the Ge (Li) detector surface.

Table 1 Estimated value of K, B and coefficient
of correlation.

Distance (cm)	K	В	Coefficient of correlation
0.6	1.19	22.6	0.9988
2	1.23	18.8	0.9999
5	1.19	5.09	//
10	1.17	1.42	"
15	1.18	0.702	"
20	1.15	0.335	11
25	1.15	0.214	"
30	1.16	0.165	"
40	1.15	0.0952	"
50	1.15	0.0624	"
70	1.15	0.0300	"
			· · · · · · · · · · · · · · · · · · ·

2. ア 線エネルギー (E) に対する効率の変化

2,734.4 keV, 1,836.1 keV, 1,274.5 keV,898.0 keV, 511 keV,279.2 keV,136.3 keV および 121.9 keV,(⁸⁸Y, ²²Na,²⁰³Hg および ⁵⁷Co)のr線を用いて,エネルギー に対する効率の変化を調べた。その結果を Fig. 4 に示 す。121.9 keV (⁵⁷Co)から 2,734.4 keV (⁸⁸Y)の間では 効率の対数値 (log ε)とr線エネルギーの対数値 (log E) はよい直線関係にある。この関係を log ε =log B-K log *E* で近似し,最小2乗法によって*B* および*K* の値を求 め,結果を **Table 1** に示した。

III 考察

1. 測定結果の関数近似

比較的低いエネルギーの r 線の場合は,位置に対する 効率変化はエネルギーによって異なっており,簡単な関 数近似はむずかしい。一方,比較的高いエネルギーの r 線の場合,位置に対する効率変化と,エネルギーに対す る効率変化は互いに独立とみることができ,簡単な関数 近似が可能となる。

¹³⁷Cs (*r*: 662 keV), ⁵⁴Mn (*r*: 835 keV), ⁶⁰Co (*r*:
 1,332 keV) の*r*線に対する測定結果は, Fig. 2 に示される薄墨の範囲で,次式で近似的に表わすことができる。

$$\varepsilon = \frac{C}{R^2} E^{-\kappa} \tag{1}$$

$$R^{2} = (X + \Delta X)^{2} + Y^{2}$$
 (2)

ここで ε: 全エネルギーピーク効率

E:入射γ線のエネルギー (keV)

X:検出器表面から線源までの距離 (cm)

⊿X:検出器表面から実行中心までの距離 (cm)

Y:検出器中心軸から線源までの距離 (cm)

C, K:検出器によって定まる定数

4X=2 cm とし、測定値を $R^2 \times \varepsilon$ に変換し最小 2 乗 近似すると、K=1.16、C=171の値が得られた。このと きの最大誤差は 12%、標準誤差は 5% であった。

効率の推定

効率が(1)式で表わされるものとし、*C* および *K* を 推定してみる。通常、Ge(Li) 半導体検出器の規格とし て、検出器-線源距離 25 cm における、3" $\phi \times 3$ " NaI (Tl) 検出器に対する ⁶⁰Co (E_r =1,332 keV) の相対効率 (ε_{RN}) が示されている。NaI(Tl) 3" $\phi \times 3$ " 検出器の全 エネルギーピーク効率が 1.2×10^{-3 1)} であることを用い ると、(1)式から

$$C = 1.2 \times 10^{-3} \cdot (25 + \Delta X)^2 \frac{\varepsilon_{\rm RN}}{1,332^{-\kappa}} \qquad (3)$$

となる。いま, K および ΔX が実験的に求められてい るとし, マニュアル (カタログ) データの $\varepsilon_{RN} = 0.0465$ を代入すると C = 171 となり,実験値とよく一致する。

Kの値が実験的に求められていない場合, E. VANO¹⁾ らの提案する次式から K を求める。

 $K = 2.13 - 0.629 \log (V_a)$ (4)

ここで V_a は有効体積 (cc) である。(4)式を用いて $V_a=28.3$ cc を代入すると, K=1.22 となり,実験値と の誤差は 5% である。この K 値を(3)式に代入すると, C=264 を得る。これらの値を用いると 122 keV~2,734 keV の範囲では,実験的に求めた前述の値を用いた場合 に対する効率の最大誤差は 13% となった。

3. 効率推定に伴う誤差について

ある距離で求められた K および C に誤差を含んでいるとし、かつ C はエネルギー E_0 で求められた効率を用いて算出されたとすれば、測定効率の相対誤差 $\Delta \varepsilon_R$ は(1)式より

$$\Delta \varepsilon_{\rm R} = \left(1 + \frac{\Delta C}{C}\right) E^{-JK} - 1 = (1 + \Delta \varepsilon_{\rm OR}) \left(\frac{E}{E_0}\right)^{-JK} - 1$$
(5)

となる。右辺の定数を左辺に移行し、対数 を とる と、 log ($\Delta \varepsilon_{R}$ +1) と log E とは線形となり、 $\Delta \varepsilon_{R}$ +1 の最大 値,最小値は E の境界で得られることになる。従って、 $E_1 \leq E \leq E_2$ とすれば、 $|\Delta \varepsilon_{R}|$ の最大値は次の式で表わさ れる。

$$\begin{aligned} \operatorname{Max} | \mathcal{\Delta}\varepsilon_{\mathrm{R}} | &= \operatorname{Max} \left\{ \left| (1 + \mathcal{\Delta}\varepsilon_{\mathrm{OR}}) \left(\frac{E_1}{E_0} \right)^{-JK} - 1 \right|, \\ \left| (1 + \mathcal{\Delta}\varepsilon_{\mathrm{OR}}) \left(\frac{E_2}{E_0} \right)^{-JK} - 1 \right| \right\} \end{aligned}$$

$$(6)$$

 ΔK , $\Delta C : K$ および C の誤差

 $\Delta \varepsilon_{\text{OR}}$: E_0 における ε の相対誤差

マニュアル (カタログ) データを使用することを前提 として、Max| $d\varepsilon_{R}$ | を求めてみる。マニュアル (カタロ グ) に示される有効体積は、通常必ずしも正 確 では な い。いま、この誤差を ±5% と見積ると、(4)式の微分 形から dK が ±3.2%^{*1} となることが 導 かれる。E. VANO らが報告するように、(4)式が 3% 誤差をもって いるとし、これらの誤差が独立にランダムに現われると すれば、 $dK = (3.2^2+3^2)^{1/2} = 4.4 \approx 5\%$ と見積ることが できる。そこで dK, $d\varepsilon_{OR}$ を ±5% と見積 り、 $E_1 =$ 200 keV, $E_2 = 3,000$ keV, $E_0 = 1,332$ keV とすれば、最 大誤差は $E = E_1$ で現われ、Max| $d\varepsilon_{R} | = 0.16$ (16%) と なる。 Max| $d\varepsilon_{R} |$ は E_0 の値によって変るが、もし E_0 が任意に選べるとすれば、log ε と log E が直線関係で 表されるとしたことから推測できるように、 $E_0 = (E_1 \cdot E_2)^{1/2}$ とすればよいことが(6)式から導かれる*²。

^{*1} $K = 1 \ge l$, $\Delta K/K = \Delta K \ge l \subset l > 0$

^{*2} JC と JK のあらゆる付号の組合せを(6)式に入れると, 8 個の値が求まる。このうち4 個は,その大小関係から 省略ができ,残りの4 個は E₀ に対して単調増加の組と 単調減少にわけられ,結局,JERが等しい点で最小とな る。

IV 結 論

28 cc 同軸型半導体検出器の 全エネルギー ピーク効率 は、 137 Cs (γ : 662 keV)、 54 Mn (γ : 835 keV)、 60 Co (γ : 1,332 keV) の点線源に対して、**Fig. 2** に薄墨で示され る範囲内で(1)式で近似することができ、等感度面は球 面となった。このときの最大誤差は 12%、標準誤差は 5% であった。K の値が実験的に求められたと仮定し、 マニュアル (カタログ) データから C を求めると、実験 的に求めた値との差は 1% 以下であった。実験値が全く ないことを仮定し、E. VANO らの式とマニュアル (カ タログ) データから測定効率を求めると、122 keV~ 2,734 keV の範囲で実験的に求めた式の値との最大誤差 は 13% であった。

通常の半導体検出器においては、200 keV~3,000 keV の範囲で検出器から適度に離れた前方*1 において、全エ ネルギーピーク効率は(1)式で近似できると考えられ る^{2-6)*2}。このとき実験値がない場合においても、点線 源に対する全エネルギーピーク効率は、有効体積(V_a)、 3" ϕ ×3" NaI(Tl) に対する相対効率 $\varepsilon_{\rm RN}$ から推定する ことができる。(1)式で全エネルギーピーク効率が完全 に表わされるものとしたとき、推定に伴う最大誤差は (6)式で表わされ、前述の V_a および $\varepsilon_{\rm RN}$ の誤差を 5% としてみると、効率の最大誤差は 16% となる。このよ うな効率の推定値は測定に際して良い目安となり、その 推定値を用いて放射能の絶対値を推定することが可能で あり、また効率較正時の手数を大幅に減ずることができ ると考えられる。

付 録

- (5)式の説明
- (1)式を用いると
- *1 おおよそ検出器の長さ程度離れ,中心軸からの 開 角 が 45°以内の範囲。
- *2 有効体積が大きくなると,近似が悪くなる傾向が見られる。

$$\begin{aligned} \mathcal{\Delta}\varepsilon_{\mathrm{R}} &= \frac{\varepsilon' - \varepsilon}{\varepsilon} = \frac{\varepsilon'}{\varepsilon} - 1 = \frac{C' \cdot E^{-\kappa'}/R^2}{C \cdot E^{-\kappa}/R^2} - 1 \\ &= \frac{C'}{C} - E^{-(\kappa'-\kappa)} - 1 = \left(1 + \frac{\mathcal{\Delta}C}{C}\right) E^{-\mathfrak{d}\kappa} - 1 \end{aligned}$$
(5')

ここで

 ε', K' および C' は、それぞれ誤差を含む効率、K お よび C とする。また、 E_0 の1点で絶対効率 $\varepsilon'(E_0)$ が 求められており、それが $\Delta \varepsilon_{OR}$ の相対誤差をもっている。 とすれば

$$\varepsilon'(E_0) = \varepsilon(E_0) (1 + \varDelta \varepsilon_{\rm OR})$$

$$C' \cdot E_0^{-\kappa'} / R^2 = C \cdot E_0^{-\kappa} / R^2 (1 + \varDelta \varepsilon_{\rm OR})$$

$$\frac{C'}{C} = E_0^{\,dK} (1 + \varDelta \varepsilon_{\rm OR}) \qquad (5'').$$

(5'')を(5')に代入すれば

$$\Delta \varepsilon_{\rm R} = (1 + \Delta \varepsilon_{\rm OR}) \left(\frac{E}{E_0}\right)^{-JK} - 1$$

となる。

参考文献

- E. VANO, L. GONZALEZ, R. GAETA and J.A. GONZALEZ; Nucl. Instr. and Meth., 123, 573-(1975).
- H. SEYFARTH, A.M. HASSAN, B. HRASTNIK, P. GOTTEL and W. DELANG; Nucl. Instr. and Meth., 105, 301 (1972).
- G. AUBIN, J. BARRETE, G. LAMOUREX and S. MONARO; Nucl. Instr. and Meth., 76, 85-(1969).
- 4) G. WALLAGE and G.E. COOTE; Nucl. Instr. and Meth., 74, 353 (1969).
- F. ADAMS and R. DAMS; "Applied Gamma-Ray Spectrometry," 2nd ed., p. 201 (1970), Pergamon Press.
- 6) 小林久伸; 原子力工業, 18(7), 75 (1972).

214